Math, asked by Aditya90970, 16 days ago

find the value of (64)^x if 8^x+2=252+2^3x​

Answers

Answered by malviyaadarsh456
1

Answer:

Step-by-step explanation:

Solution

verified

Verified by Toppr

8

x

=

2

x

64

⇒2

3x

=

2

x

64

⇒2

3x

×2

x

=2

6

⇒2

4x

=2

6

 

Since bases are same, we can equate the powers

∴4x=6

⇒x=

4

6

=

2

3

∴x=

2

3

Was this answer helpful?

Answered by user0888
6

\textrm{Given equation: -}

\rm{8^{x+2}=252+2^{3x}}

\;

\boxed{\rm{a^{m}\cdot a^{n}=a^{m+n}}}

\boxed{\rm{(a^{m})^{n}=a^{mn}}}

\;

\rm{8^2\cdot8^{x}=252+(2^{3})^{x}}

\;

\rm{64\cdot8^{x}=252+8^{x}}

\;

\rm{63\cdot8^{x}=252}

\;

\rm{\therefore8^{x}=4}

\;

\boxed{\rm{(a^{m})^{n}=a^{mn}}}

\;

\rm{8^{x}=(2^{3})^{x}=\underline{2^{3x}},\ 64^{x}=(2^{6})^{x}=\underline{2^{6x}}}

\;

\rm{\therefore64^{x}=(8^{x})^{2}=4^{2}=\boxed{\red\rm{16}}}

\;

\Large\textrm{Learn More}

\textbf{- Powers of 2}

\boxed{\begin{aligned}2^{1}=2\\\\2^{2}=4\\\\2^{3}=8\\\\2^{4}=16\\\\2^{5}=32\end{aligned}} \boxed{\begin{aligned}2^{6}=64\\\\2^{7}=128\\\\2^{8}=256\\\\2^{9}=512\\\\2^{10}=1024\end{aligned}}

\;

\textbf{-Perfect Squares}

\boxed{\begin{aligned}11^{2}=121\\\\12^{2}=144\\\\13^{2}=169\\\\14^{2}=196\\\\15^{2}=225\end{aligned}} \boxed{\begin{aligned}16^{2}=256\\\\17^{2}=289\\\\18^{2}=324\\\\19^{2}=381\\\\20^{2}=400\end{aligned}}

Similar questions