Math, asked by cricketms183, 10 months ago

find the value of 7 raise to power x ​

Attachments:

Answers

Answered by priyanshuvats65
2

Step-by-step explanation:

It may be helpful to you

Attachments:
Answered by 217him217
6

Step-by-step explanation:

 =  \sqrt{7 \sqrt{7 \sqrt{7 \sqrt{7 \sqrt{7} } } } } =  {7}^{x}   \\  =  \sqrt{7 \sqrt{7 \sqrt{7 \sqrt{7 \times  {7}^{ \frac{1}{2} } } } } }  =    {7}^{x}  \\  =  >  \sqrt{7 \sqrt{7 \sqrt{7 \times  {7}^{ \frac{1}{2}  \times  {7}^{ \frac{1}{4} } } } } }  =  {7}^{x}  \\  =  \sqrt{7 \sqrt{7 \times  {7}^{ \frac{1}{2} \times  {7}^{ \frac{1}{4} \times  {7}^{ \frac{1}{8} }  }  } } }   =  {7}^{x} \\  =  \sqrt{7 \times  {7}^{  \frac{1}{2}  \times  {7}^{ \frac{1}{4}  \times  {7}^{ \frac{1}{8}  \times  {7}^{ \frac{1}{16} } } } } }   =  {7}^{x} \\  =  {7}^{ {1}^{2} }  \times  {7}^{ \frac{1}{4} }  \times  {7}^{ \frac{1}{8} }  \times  {7}^{ \frac{1}{16} }  \times  {7}^{  \frac{1}{32}  }  =  {7}^{x}  \\  =  >  {7}^{ \frac{1}{2}  +  \frac{1}{4}  +  \frac{1}{8} +  \frac{1}{16}  +  \frac{1}{32}  }  =  {7}^{x}  \\  =  > \frac{1}{2}  +  \frac{1}{4}  +  \frac{1}{8} +  \frac{1}{16}  +  \frac{1}{32} \: are \: in \: gp \\  =  > a =  \frac{1}{2}  \: r =   \frac{ \frac{1}{4} }{ \frac{1}{2} }  =  \frac{1}{2}  \\  =  > sn =  \frac{a \times (1 -  {r}^{n} }{1 - r}  \\  =  > s5 =  \frac{ \frac{1}{2}  \times (1 -  { \frac{1}{2} }^{5}  }{1 -  \frac{1}{2} }  \\  =  > s5 =  \frac{31}{16}  \\  =  >  {7}^{ \frac{31}{16} }  =  {7}^{x}   \\  =  > x =  \frac{31}{16}

Similar questions