Math, asked by ajmerinisar15, 3 months ago

find the value of 8secsquare teta -8 tan square teta. ​

Answers

Answered by mathdude500
4

\large\underline{\sf{Given \:Question - }}

 \sf \: Find \: the \: value \: of \: 8 {sec}^{2}  \theta \:  - 8 {tan}^{2}  \theta

\large\underline{\sf{Solution-}}

We know that,

\rm :\longmapsto\:  \boxed{ \rm{{sec}^{2} x \:  -  \:  {tan}^{2} x \:  =  \: 1}}

Thus,

Given expression is

\rm :\longmapsto\:8 {sec}^{2}  \theta \:  - 8 {tan}^{2}  \theta

 =  \:  \sf \: 8 ({sec}^{2}  \theta \:  -  {tan}^{2}  \theta)

 =  \:  \sf \: 8 \times 1

 =  \:  \sf \: 8

 \rm :\implies\:\boxed{ \bf{8 {sec}^{2}  \theta \:  - 8 {tan}^{2}  \theta = 8}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions