find the value of a^2+b^2+c^2 if a+b+c=13 and ab+bc+ca=27
Answers
Answered by
6
❥ Given : a + b + c = 13 ab + bc + ca = 27
❥ To Find : Value of a² + b² + c²
a + b + c = 13
- Squaring on Both Sides of the Equation
(a + b + c)² = 13²
a² + b² + c² + 2ab + 2bc + 2ca = 169
- Taking 2 as common
a² + b² + c² + 2(ab + bc + ca) = 169
- Substitute the Given Values
a² + b² + c² + 2(27) = 169
a² + b² + c² + 54 = 169
- Subtract 54 from Both Sides
a² + b² + c² + 54 - 54 = 169 - 54
a² + b² + c² = 115
Similar questions