Math, asked by mdmudassir11, 4 months ago

find the value of a^2+b^2+c^2 if a+b+c=13 and ab+bc+ca=27​

Answers

Answered by KingSrikar
6

❥ Given : a + b + c = 13 \textsf{and} ab + bc + ca = 27

❥ To Find : Value of a² + b² + c²

\rule{315}{3}

\longrightarrow a + b + c = 13

  • Squaring on Both Sides of the Equation

\longrightarrow (a + b + c)² = 13²

\longrightarrow a² + b² + c² + 2ab + 2bc + 2ca = 169

  • Taking 2 as common

\longrightarrow a² + b² + c² + 2(ab + bc + ca) = 169

  • Substitute the Given Values

\longrightarrow a² + b² + c² + 2(27) = 169

\longrightarrow a² + b² + c² + 54 = 169

  • Subtract 54 from Both Sides

\longrightarrow a² + b² + c² + 54 - 54 = 169 - 54

\longrightarrow a² + b² + c² = 115

Similar questions