Math, asked by AAXY6, 9 months ago

Find the value of a^2+b^2+c^2 when a+b+c = 8 and ab+bc+ac = 25

Answers

Answered by ksonakshi70
1

Answer:

(a + b + c) {}^{2}  = a {}^{2}  + b {}^{2}  + c {}^{2}  + 2ab + 2bc \\  + 2ca \\ (8) {}^{2}  = a {}^{2}  + b {}^{2}  + c {}^{2}  + 2(ab + bc + ca) \\ 64 = a {}^{2}  + b {}^{2}  + c {}^{2}  + 2(25) \\ a {}^{2}  + b {}^{2} +  c {}^{2}   + 50 = 64 \\ a {}^{2} +  b {}^{2} +  c {}^{2}  = 64 - 50 = 14

Answered by baliram16
1

(a + b+ c)² = a² + b² + c² + 2ab + 2bc +2ca

(8)²= a² + b² + c² + 2(ab+ bc + ca)

64=a² + b² + c² + 2(25)

64=a² + b² + c² + 50

64-50=a² + b² + c²

14=a²+b²+c²

a²+b²+c²=14

This is your answer please mark me as brainliest if you mark me as brainliest you will get 3 points

Similar questions