Math, asked by AmjadJavedPAK, 8 months ago

find the value of a^2+b^2 when a+b=5 and ab=4
plz give explanation

Answers

Answered by krishna5714
1

Answer:

7

Step-by-step explanation:

(a+b)^2 = a^2 + b^2 + 2ab

5^2 = a^2 + b^2 + 2×4

a^2 + b^2 = 25 -8

a^2 + b^2 = 7

Answered by InfiniteSoul
5

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • a + b = 5
  • ab = 4

______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

  • \sf{\bold{ a^2 + b^2 =  ??? }}

⠀⠀⠀⠀

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

\sf{\red{\boxed{\bold{( a + b)^2 = a^2 + b^2 + 2ab}}}}

⠀⠀⠀⠀

\sf: \implies{\bold{{ ( 5)^2 = a^2 + b^2 + 2 \times 4}}}

⠀⠀⠀⠀

\sf: \implies{\bold{{ 25 = a^2 + b^2 + 8}}}

⠀⠀⠀⠀

\sf: \implies{\bold{{ a^2 + b^2 = 25 - 8 }}}

⠀⠀⠀⠀

\sf: \implies{\bold{{ a^2 + b^2 = 17 }}}

⠀⠀⠀⠀

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

  • \sf: \implies{\bold{{ a^2 + b^2 = 17 }}}

⠀⠀⠀⠀

_______________________

\sf{\orange{\boxed{\bold{Brainly\: facts :- }}}}

⠀⠀⠀⠀

\sf: \implies{\bold{{ ( a + b)^2 = a^2 + b^2 + 2ab}}}

⠀⠀⠀⠀

\sf: \implies{\bold{{ ( a - b)^2 = a^2 + b^2 - 2ab}}}

⠀⠀

\sf: \implies{\bold{{ ( a + b)\: ( a - b) = a^2 - b^2}}}

⠀⠀⠀⠀

\sf: \implies{\bold{{ ( a + b)^3 = a^3 + b^3 + 3ab( a + b)}}}

⠀⠀⠀⠀

\sf: \implies{\bold{{ ( a - b)^2 = a^3 - b^3 - 3ab( a - b)}}}

⠀⠀⠀⠀

\sf: \implies{\bold{{ ( a + b)^2 - ( a - b)^2 = 4ab}}}

Similar questions