find the value of a^3+b^3+c^3-3abc if a+b+c=10 and a^2+b^2+c^2=83
Answers
Answered by
4
We know that (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)
So 15^2 = 83 + 2(ab + bc + ca)
=> 2(ab + bc + ca) = 15^2 - 83 = 225 - 83 = 142
So ab + bc + ca = 71
Now, you can factorise
a^3 + b^3 + c^3 - 3abc as
(a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)
= 15(83 - 71)
= 15 * 12
= 180
So 15^2 = 83 + 2(ab + bc + ca)
=> 2(ab + bc + ca) = 15^2 - 83 = 225 - 83 = 142
So ab + bc + ca = 71
Now, you can factorise
a^3 + b^3 + c^3 - 3abc as
(a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)
= 15(83 - 71)
= 15 * 12
= 180
bhattisingh111:
THE ANSWER SHOULD BE 745, REST IS OK.
Similar questions