Math, asked by mayurmurugesh30, 23 days ago

Find the value of
a) 3p² + 4q² − 5 when p = 3 and q = −2
b) x³ − 3x²y + 2xy² + 8xy + 9 when x = −3 and y = 1.

Answers

Answered by helpme000002
2
He bro hope it helps u
:)
Attachments:
Answered by Anonymous
51

 \large \underline \text{Question: -} \\

Find the value of

  • a) 3p² + 4q² − 5 when p = 3 and q = −2

  • b) x³ − 3x²y + 2xy² + 8xy + 9 when x = −3 and y = 1

 \large \underline \text{Solution: -} \\

a) 3p² + 4q² − 5 when p = 3 and q = −2

Given that,

  • p = 3  \:  \:  \text{and} \:  \: q =  - 2\\

We have,

  • 3 {p}^{2}  + 4 {q}^{2}  - 5 \\

After substituting the given values,

 \implies 3 {p}^{2}  + 4 {q}^{2}  - 5 \\  \\ \implies 3 {(3)}^{2}  + 4 {( - 2)}^{2}  - 5 \\  \\ \implies 3(9) + 4(4) - 5 \\  \\ \implies 27 + 16  - 5 \\  \\ \implies 43 - 5 \\  \\ \implies 38 \\

Therefore,

  • 3p² + 4q² − 5 is equals to 38 when p = 3 and q = −2.

.

b) x³ − 3x²y + 2xy² + 8xy + 9 when x = −3 and y = 1

Given that,

  • x =  - 3  \:  \:  \text{and} \:  \: y = 1\\

We have,

  •  {x}^{3}  - 3 {x}^{2} y + 2x {y}^{2}  + 8xy + 9 \\

After substituting the given values,

\implies  {x}^{3}  - 3 {x}^{2} y + 2x {y}^{2}  + 8xy + 9 \\  \\ \implies  {( - 3)}^{3}  - 3 {( - 3)}^{2} (1) + 2( - 3) {(1)}^{2}  + 8( - 3)1 + 9 \\  \\ \implies  - 27 - 3(9)1 - 6(1) - 24 + 9 \\  \\ \implies  - 27 - 27 - 6 - 24 + 9 \\  \\ \implies  - 84 + 9 \\  \\ \implies  - 75 \\

Therefore,

  • x³ − 3x²y + 2xy² + 8xy + 9 is equals to - 75 when x = −3 and y = 1.

  \\ \large \underline \text{Required Answer: -} \\

  • a) 3p² + 4q² − 5 is equals to 38 when p = 3 and q = −2.

  • b) x³ − 3x²y + 2xy² + 8xy + 9 is equals to - 75 when x = −3 and y = 1.

Similar questions