Math, asked by cmadnure, 11 months ago

find the value of a&b if √7-1/√7+1 -√7+1/√7-1=a+b√7​

Answers

Answered by Anonymous
7

Solution :-

 \dfrac{ \sqrt{7} - 1 }{ \sqrt{7} + 1 }  -  \dfrac{ \sqrt{7} + 1 }{ \sqrt{7} - 1 }  = a + b \sqrt{7}

Rationalising each term in LHS

  \bigg(\dfrac{ \sqrt{7} - 1 }{ \sqrt{7} + 1 } \times \dfrac{ \sqrt{7}  - 1}{ \sqrt{7}  - 1}     \bigg)-   \bigg(\dfrac{ \sqrt{7} + 1 }{ \sqrt{7} - 1 } \times  \dfrac{ \sqrt{7}  + 1}{ \sqrt{7} + 1 }  \bigg)  = a + b \sqrt{7}

\dfrac{ (\sqrt{7} - 1)^{2}  }{ (\sqrt{7} )^{2}  -  {1}^{2} }-  \dfrac{ (\sqrt{7} + 1)^{2}  }{ (\sqrt{7})^{2}  -  {1}^{2} }   = a + b \sqrt{7}

[ Because (x + y)(x - y) = x² - y² ]

\dfrac{ ( \sqrt{7})^{2} +  {1}^{2} - 2( \sqrt{7})(1)}{7 - 1 }-  \dfrac{( \sqrt{7})^{2}  +  {1}^{2} + 2( \sqrt{7})(1)  }{7 - 1}   = a + b \sqrt{7}

[ Because (x + y)² = x² + y² + 2xy and (x - y)² = x² + y² - 2xy ]

\dfrac{ 7+  1 - 2 \sqrt{7}}{7 - 1 }-  \dfrac{7+  1 + 2\sqrt{7} }{7 - 1}   = a + b \sqrt{7}

\dfrac{ 8- 2 \sqrt{7}}{6 }-  \dfrac{8 + 2\sqrt{7} }{6}   = a + b \sqrt{7}

\dfrac{ 8- 2 \sqrt{7} - (8 + 2 \sqrt{7} )}{6 }= a + b \sqrt{7}

\dfrac{ 8- 2 \sqrt{7} - 8  -  2 \sqrt{7} }{6 }= a + b \sqrt{7}

\dfrac{   -  4 \sqrt{7} }{6 }= a + b \sqrt{7}

Comparing on both sides

 \implies a = 0 \qquad b \sqrt{7}  =  -  \dfrac{4 \sqrt{7} }{6}

 \implies a = 0 \qquad b =  -  \dfrac{4 \sqrt{7} }{6 \sqrt{7} }

 \implies a = 0 \qquad b =  -  \dfrac{2}{3}

Hence the value of a is 0 and the value of b is - 2/3.

Similar questions