Math, asked by PranavDhawlePatil, 1 year ago

Find the value of a & b in the following
5 + 2 \sqrt{3}  \div 7 + 4 \sqrt{3}  = a - b \sqrt{3}

Answers

Answered by Anonymous
43

 \sf given :  -  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  = a - b \sqrt{3}  \\  \\  \sf  LHS  :  -  \\  \\  \sf =  \frac{5 + 2 \sqrt{ 3} }{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }  \\  \\  \sf =  \frac{(5 + 2 \sqrt{3})(7 - 4 \sqrt{3}  )}{(7 + 4 \sqrt{3} )(7 - 4 \sqrt{3} )}  \\  \\  \sf =  \frac{5(7 - 4 \sqrt{3} ) + 2 \sqrt{3}(7 - 4 \sqrt{3})  }{( {7)}^{2}  - ( {4 \sqrt{3} })^{2} }  \\  \\  \sf =  \frac{35 - 20 \sqrt{3}  + 14 \sqrt{3}  - 24}{49 - 48}  \\  \\  \sf = 11 - 6 \sqrt{3}

comparing LHS with RHS we get,

➡ 11 - 6√3 = a - b√3

hence, a = 11 and b = 6

identity used :- (a + b)(a - b) = a² - b²

Answered by Anonymous
35

 \dfrac{5 \:  +  \: 2 \sqrt{3} }{7 \:  +  \: 4 \sqrt{3} }  =  \: a \:  -  \: b \sqrt{3}

___________ [ GIVEN ]

• We have to find the value of a and b

_____________________________

=>  \dfrac{5 \:  +  \: 2 \sqrt{3} }{7 \:  +  \: 4 \sqrt{3} }  =  \: a \:  -  \: b \sqrt{3}

Rationalize it ..

=>  \dfrac{5 \:  +  \: 2 \sqrt{3} }{7 \:  +  \: 4 \sqrt{3} } × \dfrac{7 \:  -  \: 4 \sqrt{3} }{7 \:  - \: 4 \sqrt{3} }

(a + b) (a - b) = a² - b²

=> \dfrac{(5 \:  +  \: 2 \sqrt{3})(7 \:  -  \: 4 \sqrt{3})  }{ {(7)}^{2}  \:  -  \:( 4 \sqrt{3})^{2}  }

=> \dfrac{(5 \:  +  \: 2 \sqrt{3})(7 \:  -  \: 4 \sqrt{3})  }{ 49  \:   -   \:48  }

=> (5 \:  +  \: 2 \sqrt{3})(7 \:  -  \: 4 \sqrt{3})

=> 5(7 - 4√3) + 2√3(7 - 4√3)

=> 35 - 20√3 + 14√3 - 24

=> 11 - 6√3

____________________________

Now ..

a - b√3 = 11 - 6√3

Here.. a = 11

and b√3 = 6√3

=> b = 6

_____________________________

\huge{a\:=\:11}

and

\huge{b\:=\:6}

___________ [ ANSWER ]

______________________________

Similar questions