Math, asked by faaru, 1 year ago

Find the value of a and b ☺️​

Attachments:

Answers

Answered by Anonymous
6

Answer:

❤️ Hey mate ❤️

Check attachment...

Attachments:
Answered by Anonymous
7

\frac{1 \:  +  \:  \sqrt{48} }{5 \sqrt{3} \:  +  \: 4 \sqrt{2}  \:  -  \:  \sqrt{72}  \:  -  \:  \sqrt{108}   \:  +  \:  \sqrt{8}  \:  +  \: 2}  \:  =  \: a \:  +  \: b \sqrt{3}

___________ [ GIVEN ]

• We have to find the value of a and b.

____________________________

=> \frac{1 \:  +  \:  \sqrt{48} }{5 \sqrt{3} \:  +  \: 4 \sqrt{2}  \:  -  \:  \sqrt{72}  \:  -  \:  \sqrt{108}   \:  +  \:  \sqrt{8}  \:  +  \: 2}  \:  =  \: a \:  +  \: b \sqrt{3}

=> \frac{1 \:  +  \:  4\sqrt{3} }{5 \sqrt{3} \:  +  \: 4 \sqrt{2}  \:  -  \:  6\sqrt{2}  \:  -  \:  6\sqrt{3}   \:  +  \:  2\sqrt{2}  \:  +  \: 2}  \:  =  \: a \:  +  \: b \sqrt{3}

=> \frac{1 \:  +  \:  4\sqrt{3} }{  - \:1 \sqrt{3} \:  +  \: 6 \sqrt{2}  \:  -  \:  6\sqrt{2} \:  +  \: 2}  \:  =  \: a \:  +  \: b \sqrt{3}

=> \frac{1 \:  +  \:  4\sqrt{3} }{  - \:1 \sqrt{3}\:  +  \: 2}  \:  =  \: a \:  +  \: b \sqrt{3}

On rationalization we get,

=> \frac{(1 \:  +  \:  4\sqrt{3})(2 \:  +  \:  \sqrt{3} ) }{  - \:3\:  +  \: 4}  \:  =  \: a \:  +  \: b \sqrt{3}

=> (1 \:  +  \:  4\sqrt{3})(2 \:  +  \:  \sqrt{3} )  \:  =  \: a \:  +  \: b \sqrt{3}

=> 14\:+\:9\sqrt{3}\:=\:a\:+\:b\sqrt{3}

On comparing we get,

=> a = 14 and b = 9

________________________________

Similar questions