Math, asked by deepesh4079, 11 months ago

Find the value of a and b​

Attachments:

Answers

Answered by abhi569
5

Answer:

0 , 1.

Step-by-step explanation:

Simplifying LHS :

 \implies \dfrac{ 7 +  \sqrt{5}  }{ 7 -  \sqrt{5} } - \dfrac{ 7  -  \sqrt{5}  }{ 7  +  \sqrt{5}} \\  \\  \\  \implies \dfrac{ (7 +  \sqrt{5} ) {}^{2}   - (7 -  \sqrt{5} ) {}^{2} }{ (7 -  \sqrt{5} )(7 +  \sqrt{5} )}

Using :

( a + b )^2 = a^2 + b^2 + 2ab

( a - b )^2 = a^2 + b^2 - 2ab

( a + b )( a - b ) = a^2 - b^2

 \implies \dfrac{ (7  {}^{2} +  (\sqrt{5} {)}^{2}    + 14  \sqrt{5}) - (7 {}^{2} +   ( \sqrt{5} ) {}^{2}  - 14 \sqrt{5})  }{ (7 -  \sqrt{5})(7 +  \sqrt{5} {)} } \\  \\  \\  \implies \dfrac{ (7  {}^{2} +  (\sqrt{5} {)}^{2}    + 14  \sqrt{5}) - 7 {}^{2}   -  ( \sqrt{5} ) {}^{2}  + 14 \sqrt{5})  }{ (7) {}^{2}  -  ( \sqrt{5}) {}^{2} } \\  \\  \\  \implies \dfrac{28 \sqrt{5} }{49 - 5}

= > 28√5 / 44

= > 0 + 7√5 / 11

Comparing both sides :

= > a = 0

= > 7√5 / 11 = 7√5 b / 11

= > b = 1

Answered by saivivek16
1

Step-by-step explanation:

Aloha !

7+√5/7-√5 - 7-√5/7+√5

(7+√5)(7+√5)-(7-√5)(7-√5) ÷ 7-√5 - 7+√5

(7+√5)²-(7-√5)²÷ 7-√5 -7 +√5

(49+25+14√5) - (49+25-14√5)÷ 49-5

14√5+14√5÷44

28/44×√5

7/11×√5

Comparing with a+7/11× √5 b

Here a=0 and b= 1.

Thank you

@ Twilight Astro ✌️☺️♥️

Similar questions