Math, asked by GungunSahu2005, 9 months ago

find the value of A and B ​

Attachments:

Answers

Answered by 217him217
4

Step-by-step explanation:

= (5+2√3)/(7+4√3)

= (5+2√3)*(7-4√3) / (7² - (4√3)²)

= (35 - 20√3+14√3 - 8*3) / (49-48)

= (35-24 - 6√3)/1

= 11-6√3

=> a = 11 , b=-6

Answered by kanakjoshi159
0

Answer: hey, hope it helps!

LHS = (5 + 2√3 ) / ( 7 + 4√3 )

rationalize the denominator

= (5 + 2√3 ) ( 7 - 4√3 ) / [ ( 7 + 4√3 ) ( 7 - 4√3 ) 

= [ 5 ×7 - 5 × 4√3 + 2√3 × 7 - 2√3 × 4√3 ] / [ (7 )² - (4√3 )² ]

here we used ( x + y ) (x - y ) = x² - y²  identity

= [35 -20√3 + 14√3 -24 ] / [ 49 - 48 ]

= (11 - 6√3 )

therefore ,

LHS = RHS

11 - 6√3 = A - B√3

comparing both sides

A = 11,

B = 6

PLZ MARK IT BRAINLIEST!

Similar questions