Math, asked by narayana2789, 7 months ago

find the value of a and b.​

Attachments:

Answers

Answered by Anonymous
2

Answer:

We will solve it through rationalization:

 \frac{3 +  \sqrt{7} }{3 -  \sqrt{7} }  = a + b \sqrt{7}

 =  >  \frac{3 +  \sqrt{7} }{3 -  \sqrt{7} }  \times  \frac{3 +  \sqrt{7} }{3 +  \sqrt{7} }  = a + b \sqrt{7}  \\

 =  >  \frac{(3 +  \sqrt{7}) {}^{2}  }{(3) {}^{2}  -  (\sqrt{7}) }  {}^{2}  = a + b \sqrt{7}

 =  >  \frac{9 + 7 + 6 \sqrt{7} }{9 - 7}  = a +  \sqrt{7}

 =  >  \frac{16 + 6 \sqrt{7} }{2}  = a + b \sqrt{7}

 =  >  \frac{8 + 3 \sqrt{7} }{1}  = a + b \sqrt{7}

 =  > 8 + 3 \sqrt{7}  = a + b \sqrt{7}

Therefore,

a = 8 \:  \:  \:  \: and \:  \:  \: b  = 3

Similar questions