Math, asked by hemantsinghrajpoot11, 8 months ago

Find the value of a and b.
√3+1/√3-1= a + b√3​

Answers

Answered by Anonymous
2

Answer:

a = 2 and b = 1

Step-by-step explanation:

==: \frac{\sqrt{3} + 1 }{\sqrt{3} - 1 } = a + b\sqrt{3}\\==: \frac{\sqrt{3} + 1 }{\sqrt{3} - 1 } * \frac{\sqrt{3} + 1 }{\sqrt{3} + 1 } = a + b\sqrt{3}\\==: \frac{3 + 1 + 2\sqrt{3} }{3 - 1 } = a + b\sqrt{3}\\==: \frac{4 + 2\sqrt{3} }{2} = a + b\sqrt{3}\\==: 2 + \sqrt{3} = a + b\sqrt{3}\\

a = 2 and b = 1

Pls mark my answer as brainlist

Pls follow me

Answered by snehitha2
3

Answer:

\boxed{\bf .'. \ a=2,b=1}

Step-by-step explanation:

rationalising \ factor=\sqrt{3} +1 \\\\ => \frac{\sqrt{3}+1 }{\sqrt{3}-1 } \\\\ => \frac{\sqrt{3}+1 }{\sqrt{3}-1 } \times  \frac{\sqrt{3}+1 }{\sqrt{3}+1 } \\\\ =>  \frac{(\sqrt{3}+1)(\sqrt{3} +1) }{(\sqrt{3}-1 )(\sqrt{3}+1)} \\\\ => \frac{\sqrt{3}^2+\sqrt{3}+\sqrt{3}+1^2}{\sqrt{3}^2-1^2} \\\\ => \frac{3+1+2\sqrt{3}}{3-1} \\\\ => \frac{4+2\sqrt{3}}{2} \\\\ =>2+\sqrt{3} =a+b\sqrt{3} \\\\ \boxed{.'. \ a=2,b=1} \\\\ ------------------ \\ formula \ used: \\ (a+b)(a-b)=a^2-b^2 \\ ------------------

Similar questions