Math, asked by iamanonymous987, 10 months ago

Find the value of a and b: 3+√2/3−√2 = +√2

Answers

Answered by TrickYwriTer
2

Step-by-step explanation:

Given -

  • 3 + √2/3 - √2 = a + b√2

To Find -

  • Value of a and b

Rationalising the denominator :-

→ 3+√2/3-√2 × 3+√2/3+√2 = a + b√2

→ 9+3√2+3√2+2/9-2 = a + b√2

→ 11 + 6√2/7 = a + b√2

→ 11/7 + 6√2/7 = a + b√2

After comparing 11 + 62/7 with a + b√2, we get :

Hence,

The value of a is 11/7 and b is 6/7

Some related questions :-

https://brainly.in/question/17741297

Answered by Anonymous
4

\large{\underline{\bf{\pink{Answer:-}}}}

 \sf \pink{a = \frac{11}{7}, \:and\:b=\frac{6}{7}}

\large{\underline{\bf{\blue{Explanation:-}}}}

\large{\underline{\bf{\green{Given:-}}}}

\frac{3+\sqrt{2}}{3-\sqrt{2}}=a+b\sqrt{2}

\large{\underline{\bf{\green{To\:Find:-}}}}

✰ we need to find the value of a and b.

\huge{\underline{\bf{\red{Solution:-}}}}

Rationalising the denominator

\frac{3+\sqrt{2}}{3-\sqrt{2}}=a+b\sqrt{2} \\  \\  :  \implies  \sf\frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  \times  \frac{3 +  \sqrt{2} }{3 +  \sqrt{2} } =  a + b \sqrt{2}   \\  \\  :  \implies \sf \: by \: using \: (a + b) {}^{2}  =  {a}^{2} +  {b}^{2}  + 2ab \\ \\\sf  \:  \:  \:  \:  \: \: and \: {a}^{2}  -  {b}^{2} =   ( a+b ) +  (a - b)  \\  \\:  \implies \sf \frac{9 + 2 + 6 \sqrt{2} }{9 - 2}   = a + b \sqrt{2}  \\  \\</p><p>:  \implies \sf \frac{11 + 6 \sqrt{2} }{7} = a + b \sqrt{2}  \\  \\  :  \implies \sf \frac{ 11 + 6 \sqrt{2}  }{7}=a + b \sqrt{2}  \\  \\:  \implies \sf \frac{11  }{7} + \frac{6 +  \sqrt{2} }{7}   = a + b \sqrt{2}   \\  \\ :  \implies \sf \pink{a = \frac{11}{7}, \:and\:b=\frac{6}{7}}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions