Math, asked by funwithlearn22, 3 months ago

Find the value of a and b​

Attachments:

Answers

Answered by abhijitdey16122004
0

Answer:

a=3 and b=2

Step-by-step explanation:

If you had liked my answer then please mark me as brainleast.

Answered by varadad25
4

Question:

Find the value of a and b.

\displaystyle{\sf\:\dfrac{3\:+\:2\:\sqrt{3}}{3\:-\:2\:\sqrt{3}}\:=\:a\:+\:b\:\sqrt{3}}

Answer:

\displaystyle{{\boxed{\red{\sf\:a\:=\:-\:7\:}}}\:\:\&\:\:\:{\boxed{\red{\sf\:b\:=\:-\:4\:}}}}

Step-by-step-explanation:

The given equation is

\displaystyle{\sf\:\dfrac{3\:+\:2\:\sqrt{3}}{3\:-\:2\:\sqrt{3}}\:=\:a\:+\:b\:\sqrt{3}}

We have to find the value of a and b.

Now,

\displaystyle{\sf\:\dfrac{3\:+\:2\:\sqrt{3}}{3\:-\:2\:\sqrt{3}}\:=\:a\:+\:b\:\sqrt{3}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{3\:+\:2\:\sqrt{3}}{3\:-\:2\:\sqrt{3}}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{3\:+\:2\:\sqrt{3}}{3\:-\:2\:\sqrt{3}}\:\times\:\dfrac{3\:+\:2\:\sqrt{3}}{3\:+\:2\:\sqrt{3}}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{(\:3\:+\:2\:\sqrt{3}\:)^2}{(\:3\:)^2\:-\:(\:2\:\sqrt{3}\:)^2}\:\quad\:-\:-\:-\:[\:\because\:a^2\:-\:b^2\:=\:(\:a\:+\:b\:)\:(\:a\:-\:b\:)\:]}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{3^2\:+\:2\:\times\:3\:\times\:2\:\sqrt{3}\:+\:(\:2\:\sqrt{3}\:)^2}{9\:-\:4\:\times\:3}\:\quad\:-\:-\:-\:[\:\because\:(\:a\:+\:b\:)^2\:=\:a^2\:+\:2ab\:+\:b^2\:]}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{9\:+\:12\:\sqrt{3}\:+\:4\:\times\:3}{9\:-\:12}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{9\:+\:12\:\sqrt{3}\:+\:12}{-\:3}}

\displaystyle{\implies\sf\:LHS\:=\:-\:\dfrac{9\:+\:12\:+\:12\:\sqrt{3}}{3}}

\displaystyle{\implies\sf\:LHS\:=\:-\:\dfrac{21\:+\:12\:\sqrt{3}}{3}}

\displaystyle{\implies\sf\:LHS\:=\:-\:\left(\:\cancel{\dfrac{21}{3}}\:+\:\dfrac{\cancel{12}\:\sqrt{3}}{\cancel{3}}\:\right)}

\displaystyle{\implies\sf\:LHS\:=\:-\:(\:7\:+\:4\:\sqrt{3}\:)}

\displaystyle{\implies\sf\:LHS\:=\:-\:7\:-\:4\:\sqrt{3}}

\displaystyle{\implies\sf\:RHS\:=\:a\:+\:b\:\sqrt{3}}

\displaystyle{\implies\sf\:a\:=\:-\:7\:\:\&\:\:b\:=\:-\:4\:\:\quad\:-\:-\:-\:[\:By\:comparing\:]}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:a\:=\:-\:7\:}}}\:\:\:\&\:\:\:\underline{\boxed{\red{\sf\:b\:=\:-\:4\:}}}}

Similar questions