Find the value of a and b: 5+√11/3-2√11=a+b√11
Answers
Answered by
1
Answer:
Answer:
x=\frac{-37}{35} and y=\frac{-13}{35}
Step-by-step explanation:
Given: \frac{5+\sqrt{11}}{3-2\sqrt{11}}
Rationalise the above equation, we have
x+y\sqrt{11}=\frac{5+\sqrt{11}}{3-2\sqrt{11}}{\times}\frac{3+2\sqrt{11}}{3+2\sqrt{11}}
x+y\sqrt{11}=\frac{15+3\sqrt{11}+10\sqrt{11}+22}{9-44}
x+y\sqrt{11}=\frac{37+13\sqrt{11}}{-35}
x+y\sqrt{11}=\frac{-37}{35}+\frac{-13}{35}\sqrt{11}
Now, comparing the LHS and RHS,
x=\frac{-37}{35} and y=\frac{-13}{35}
Answered by
0
Answer:
xnxxx google pe search
Similar questions