Math, asked by maharajahramkumarpan, 10 months ago

Find the value of a and b 5+2√3 upon 7+4√3 =a +b √3​

Answers

Answered by anjalijha16
1

I hope it was helpful

kindly make it the Brainliest answer

Thank you for asking!

Attachments:
Answered by Anonymous
11

 \huge \bf \underline \red{Answer}

 \bf{ \boxed{ \underline{ \green{ \tt{a = 11, \: b = 6 \: }}}}}

___________________________________

 \sf \underline \blue{Given}

Find the value of a and b 5+2√3 upon 7+4√3 =a +b √3

___________________________________

 \sf \underline{step \: by \: step \: explanation}

LHS

 \bf \red{ \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3}}}

Now we have to multiply to numerator and denominator by 7+4√3 we get,

 \bf \red{⟹ =  \frac{(5 + 2 \sqrt{3})(7 - 4 \sqrt{3})  }{(7 + 4 \sqrt{3})(7 - 4 \sqrt{3})}  }

 \bf \blue{⟹ =  \frac{35 - 20 \sqrt{3 + 14 \sqrt{3} - 24 } }{ {7}^{2} - (4 \sqrt{3} {}^{2})  }}

 \bf \green{⟹ algebraic \: formula}

 \bf{ \boxed{ \underline{ \red{ \tt{(x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }}}}}

we get,

 \bf \orange{⟹ =  \frac{11 - 6 \sqrt{3} }{49 - 48}}

 \bf \pink{⟹ = 11 - 6 \sqrt{3} \:  is \: eq(1)}

Given RHS

 \bf{a - b \sqrt{3} \: is \: eq(2)}

now compare both we get

 \bold \red{a = 11}

 \bold \blue{b = 6}

I hope it's help uh

Similar questions