Math, asked by tishadheera25, 8 months ago

find the value of a and b......... √5+√3/√5-√3=a+b√15​

Answers

Answered by yeshashah740
2

Answer:(a+b)a must be equal to 20 as per my calculation.

Step-by-step explanation:

Attachments:
Answered by Anonymous
1

Answer:

a = 4, b = 1

Step-by-step explanation:

\frac{\sqrt{5} + \sqrt{3}}{{\sqrt{5} -\sqrt{3} }} = a+b√15​

\frac{\sqrt{5} + \sqrt{3}}{{\sqrt{5} -\sqrt{3} }} ×\frac{\sqrt{5} + \sqrt{3}}{{\sqrt{5} + \sqrt{3} }} = a+b√15​

\frac{5 + 2\sqrt{15} + 3 }{5 - 3} = a+b√15​    [{(a+b)² = a² + 2ab + b²}, {(a + b)(a - b) = a² - b²}}

\frac{8 + 2\sqrt{15}}{2}  = a+b√15

\frac{2(4 + \sqrt{15})}{2}  = a+b√15

4 + \sqrt{15} = a+b√15

==> a = 4, b = 1

Hope it helps you. Mark me as brainliest.

Similar questions