Math, asked by rumatanmayee, 1 month ago

Find the value of a and b
5+√3 / 7+2√3 = a-b√3

Answers

Answered by bharat956064
0

Answer:

please mark me brainlest

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\dfrac{5 +  \sqrt{3} }{7 + 2 \sqrt{3} }  = a - b \sqrt{3}

On rationalizing the denominator, we get

\rm :\longmapsto\:\dfrac{5 +  \sqrt{3} }{7 + 2 \sqrt{3} } \times \dfrac{7 - 2 \sqrt{3} }{7 - 2 \sqrt{3} }   = a - b \sqrt{3}

\rm :\longmapsto\:\dfrac{35 - 10 \sqrt{3}  +  7\sqrt{3}  - 6}{ {7}^{2} -  {(2 \sqrt{3} )}^{2}  }    = a - b \sqrt{3}

\red{\bigg \{ \because \: (x + y)( x - y) =  {x}^{2} -  {y}^{2}  \bigg \}}

\rm :\longmapsto\:\dfrac{29 - 3 \sqrt{3}}{49-  12  }    = a - b \sqrt{3}

\rm :\longmapsto\:\dfrac{29 - 3 \sqrt{3}}{37}    = a - b \sqrt{3}

\rm :\longmapsto\:  \dfrac{29}{37} - \dfrac{3 \sqrt{3}}{37}    = a - b \sqrt{3}

\rm :\longmapsto\:  \dfrac{29}{37} - \dfrac{3}{37}  \sqrt{3}    = a - b \sqrt{3}

On comparing, we get

\bf :\longmapsto\:a = \dfrac{29}{37}  \:  \: and \:  \: b = \dfrac{3}{37}

Additional Information :-

More Identities to know:

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions