Find the value of a and b : 7 +√5 - 7- √5 = a + 7 b √5
7 - √5 7 +√5 11
Attachments:
Answers
Answered by
0
Step-by-step explanation:
√5 - 7- √5 = a + 7 b √5
7 - √5 7 +√5 11√5 - 7- √5 = a + 7 b √5
7 - √5 7 +√5 11√5 - 7- √5 = a + 7 b √5
7 - √5 7 +√5 11√5 - 7- √5 = a + 7 b √5
7 - √5 7 +√5 11√5 - 7- √5 = a + 7 b √5
7 - √5 7 +√5 11√5 - 7- √5 = a + 7 b √5
7 - √5 7 +√5 11√5 - 7- √5 = a + 7 b √5
7 - √5 7 +√5 11√5 - 7- √5 = a + 7 b √5
7 - √5 7 +√5 11√5 - 7- √5 = a + 7 b √5
7 - √5 7 +√5 11√5 - 7- √5 = a + 7 b √5
7 - √5 7 +√5 11√5 - 7- √5 = a + 7 b √5
7 - √5 7 +√5 11
Answered by
9
Given :
To find :
Value of a and b
Solution :
Identities in use will be
LHS
Now,on taking LCM
we get,
on Implementing identities ,we get
On simplifying,we obtain
On Removing Brackett
RHS
Now,taking LHS=RHS to find a and b
we get
On comparing LHS and RHS
we get
Similar questions