Math, asked by jeromjoshy2, 5 months ago

Find the value of a and b : 7 +√5 - 7- √5 = a + 7 b √5
7 - √5 7 +√5 11​

Attachments:

Answers

Answered by itsnasreensahaikh
0

Step-by-step explanation:

√5 - 7- √5 = a + 7 b √5

7 - √5 7 +√5 11√5 - 7- √5 = a + 7 b √5

7 - √5 7 +√5 11√5 - 7- √5 = a + 7 b √5

7 - √5 7 +√5 11√5 - 7- √5 = a + 7 b √5

7 - √5 7 +√5 11√5 - 7- √5 = a + 7 b √5

7 - √5 7 +√5 11√5 - 7- √5 = a + 7 b √5

7 - √5 7 +√5 11√5 - 7- √5 = a + 7 b √5

7 - √5 7 +√5 11√5 - 7- √5 = a + 7 b √5

7 - √5 7 +√5 11√5 - 7- √5 = a + 7 b √5

7 - √5 7 +√5 11√5 - 7- √5 = a + 7 b √5

7 - √5 7 +√5 11√5 - 7- √5 = a + 7 b √5

7 - √5 7 +√5 11

Answered by GraceS
9

\sf\huge\bold{Answer:}

Given :

 \frac{7  +  \sqrt{5} }{7 -  \sqrt{5} }  -  \frac{7 -  \sqrt{5} }{7 +  \sqrt{5} }  = a +  \frac{7}{11} b \sqrt{5}

To find :

Value of a and b

Solution :

Identities in use will be

⇒(x - y)(x + y) =  {x}^{2} -  {y}^{2}  \\  ⇒(x + y)(x + y) =  {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2}  \\   ⇒(x - y)(x - y) =  {(x - y)}^{2}  =  {x}^{2} -2xy +  {y}^{2}

LHS

 \frac{7  +  \sqrt{5} }{7 -  \sqrt{5} }  -  \frac{7 -  \sqrt{5} }{7 +  \sqrt{5} }   \\

Now,on taking LCM

we get,

 =  \frac{( {7 +  \sqrt{5} )}^{2} -  {(7 -  \sqrt{5} )}^{2}  }{(7 +  \sqrt{5})(7 -  \sqrt{5} ) }

on Implementing identities ,we get

  = \frac{( {7)}^{2} +  { (\sqrt{5} )}^{2} + 2(7)( \sqrt{5} ) - ( {7}^{2} +  \sqrt{5}  {}^{2}  - 2 \times 7 \times  \sqrt{5}  )  }{ {7}^{2} -  { \sqrt{5} }^{2}  }

On simplifying,we obtain

  = \frac{49 + 5 + 14 \sqrt{5} - (49 + 5 - 14 \sqrt{5})  }{49 - 5}

On Removing Brackett

 =  \frac{49 + 5 + 14 \sqrt{5}  - 49 - 5 + 14 \sqrt{5} }{44}  \\  =  \frac{14 \sqrt{5}  + 14 \sqrt{5} }{44}  \\  =  \frac{28 \sqrt{5} }{44}  \\  =  \frac{7 \sqrt{5} }{11}

RHS

 = a +  \frac{7}{11}b \sqrt{5}

Now,taking LHS=RHS to find a and b

we get

 ⇒ \frac{7 \sqrt{5} }{11}  = a +  \frac{7}{11}b \sqrt{5}   \\ ⇒0 +  \frac{7}{11} ( 1 )(   \sqrt{5})  = a + \frac{7}{11}  b \sqrt{5}

On comparing LHS and RHS

we get

⇒a = 0 \\ ⇒b = 1

Similar questions