Math, asked by Prabhaagnihotri, 9 months ago

find the value of a and b √7 - 5 / √7 + 5 = a + b √35​

Answers

Answered by amitkumar44481
59

AnsWer :

a = -6 and b = 1.

Correct Question :

Find the value of a and b where, √7 - √5 / √7 + √5 = a + b√35.

Solution :

 \tt\longmapsto  \frac{ \sqrt{7}  -  \sqrt{5} }{ \sqrt{7} +  \sqrt{5}  }

Rationalizing the denominator,

 \tt \longmapsto  \frac{ \sqrt{7}   -   \sqrt{5} }{ \sqrt{7}  +   \sqrt{5}  }  \times  \frac{ \sqrt{7}   -  \sqrt{5} }{ \sqrt{7}  -  \sqrt{5} }

 \tt \longmapsto  \frac{ {( \sqrt{7} -  \sqrt{5}  )}^{2} }{ { \sqrt{(7)} }^{2}  -  { \sqrt{(5)} }^{2} }

 \tt \longmapsto  \frac{7 + 5 - 2 \sqrt{35} }{7 - 5}

 \tt \longmapsto  \frac{12 - 2 \sqrt{35} }{2}

 \tt \longmapsto  \frac{2(6 -  \sqrt{35}) }{2}

 \tt \longmapsto 6 -  \sqrt{35}

Taking negative sign common we get,

 \tt \longmapsto  - 6 +  \sqrt{35} .

So, We can Say that,

 \tt \mapsto a  =  - 6 \:  \: and \:  \: b = 1.

Therefore, the value of a be -6 and b = 1.

Similar questions