find the value of 'a' and 'b' for which the following system of linear equations has infinite number of solutions 2x+3y=7, (a+b+1)x + (a+2b+2)y=4(a+b)+1
Answers
Answered by
110
Hey Mate !
Here is your solution :
=> 2x + 3y = 7
=> 2x + 3y - 7 = 0 ----------- ( 1 )
Here,
=> a1 = 2
=> b1 = 3
=> c1 = -7
And,
=> ( a + b + 1 )x + ( a + 2b + 2 )y = 4( a + b ) + 1
=> ( a + b + 1 )x + ( a + 2b + 2 )y - 4( a + b ) - 1=0 ------------ ( 2 )
Here,
=> a2 = ( a + b + 1 )
=> b2 = ( a + 2b + 2 )
=> c2 = -4( a + b ) - 1 = - [ 4( a + b ) + 1 ]
For any two linear equations in two equations to have infinte solutions,
=> a1/a2 = b1/b2 = c1/c2
=> 2/( a + b + 1 ) = 3/( a + 2b + 2 ) = -7 /-[ 4( a + b ) + 1 ]
Now,
=> 2/( a + b + 1 ) = 3/( a + 2b + 2 )
=> 2( a + 2b + 2 ) = 3( a + b + 1 )
=> 2a + 4b + 4 = 3a + 3b + 3
=> 4 - 3 = 3a - 2a + 3b - 4b
=> 1 = a - b
=> a - b = 1 -------------------- ( 3 )
And,
=> 2/( a + b + 1 ) = -7/-[ 4( a + b ) + 1 ]
=> 2/( a + b + 1 ) = 7/[ 4( a + b ) + 1 ]
=> 2[ 4( a + b ) + 1 ] = 7( a + b + 1 )
=> 8( a + b ) + 2 = 7a + 7b + 7
=> 8a + 8b + 2 = 7a + 7b + 7
=> 8a - 7a + 8b - 7b = 7 - 2
=> a + b = 5 ---------------- ( 4 )
Adding ( 3 ) and ( 4 ),
=> a - b + a + b = 1 + 5
=> 2a = 6
=> a = 6 ÷ 2
=> a = 3
By substituting the value of a in ( 1 ),
=> a - b = 1
=> ( 3 ) - b = 1
=> 3 -b = 1
=> 3 -1 = b
=> 2 = b
Hence, a = 3 and b = 2.
===============================
Hope it helps !! ^_^
Here is your solution :
=> 2x + 3y = 7
=> 2x + 3y - 7 = 0 ----------- ( 1 )
Here,
=> a1 = 2
=> b1 = 3
=> c1 = -7
And,
=> ( a + b + 1 )x + ( a + 2b + 2 )y = 4( a + b ) + 1
=> ( a + b + 1 )x + ( a + 2b + 2 )y - 4( a + b ) - 1=0 ------------ ( 2 )
Here,
=> a2 = ( a + b + 1 )
=> b2 = ( a + 2b + 2 )
=> c2 = -4( a + b ) - 1 = - [ 4( a + b ) + 1 ]
For any two linear equations in two equations to have infinte solutions,
=> a1/a2 = b1/b2 = c1/c2
=> 2/( a + b + 1 ) = 3/( a + 2b + 2 ) = -7 /-[ 4( a + b ) + 1 ]
Now,
=> 2/( a + b + 1 ) = 3/( a + 2b + 2 )
=> 2( a + 2b + 2 ) = 3( a + b + 1 )
=> 2a + 4b + 4 = 3a + 3b + 3
=> 4 - 3 = 3a - 2a + 3b - 4b
=> 1 = a - b
=> a - b = 1 -------------------- ( 3 )
And,
=> 2/( a + b + 1 ) = -7/-[ 4( a + b ) + 1 ]
=> 2/( a + b + 1 ) = 7/[ 4( a + b ) + 1 ]
=> 2[ 4( a + b ) + 1 ] = 7( a + b + 1 )
=> 8( a + b ) + 2 = 7a + 7b + 7
=> 8a + 8b + 2 = 7a + 7b + 7
=> 8a - 7a + 8b - 7b = 7 - 2
=> a + b = 5 ---------------- ( 4 )
Adding ( 3 ) and ( 4 ),
=> a - b + a + b = 1 + 5
=> 2a = 6
=> a = 6 ÷ 2
=> a = 3
By substituting the value of a in ( 1 ),
=> a - b = 1
=> ( 3 ) - b = 1
=> 3 -b = 1
=> 3 -1 = b
=> 2 = b
Hence, a = 3 and b = 2.
===============================
Hope it helps !! ^_^
Anonymous:
Bye
Answered by
17
Step-by-step explanation:
I hope the pic may help you
Attachments:
Similar questions