Math, asked by juhishaikh257, 11 months ago

Find the value of a and b if 4+√2/2+√2=a-√b

Answers

Answered by Anonymous
9

  \sf given :  -  \:  \frac{4 +  \sqrt{2} }{2 +  \sqrt{2} }  = a -  \sqrt{b}  \\  \\  \sf here \: we \: have \: to \: find \: the \: value \: of \:  \\  \sf a \: and \: b \\  \\   \sf so \: first \: we \: needa \: rationalize \: the \\  \sf denominator. \\  \\  \sf =  \frac{4 +  \sqrt{2} }{2 +  \sqrt{2} }  \times  \frac{2 -  \sqrt{2} }{2 -  \sqrt{2} }  \\  \\  \sf =  \frac{(4 +  \sqrt{2})(2 -  \sqrt{2} ) }{(2 +  \sqrt{2} )(2 -  \sqrt{2} )}  \\  \\  \sf =  \frac{4(2 -  \sqrt{2} ) +  \sqrt{2} (2 -  \sqrt{2} )}{( {2})^{2} -  { (\sqrt{2} )}^{2}  }  \\  \\  \sf =  \frac{8 - 4 \sqrt{2} + 2 \sqrt{2} - 2  }{4 - 2}  \\  \\   \sf =  \frac{ 6 - 2 \sqrt{2} }{2}  \\  \\  \sf =  \frac{( \cancel2 \times 3) - ( \cancel2 \times  \sqrt{2}) }{ \cancel2}  \\  \\ \sf =  \boxed{3 -  \sqrt{2} }

comparing (3 - √2) with a - √b

➡ 3 - √2 = a - √b

hence, the value of a = 3 and b = 2

Answered by mayankrajput56078
1

Answer:

4

Step-by-step explanation:

dvdhxgxggxhddhdj the answer is 67

Similar questions