Math, asked by vasavaaarav3, 2 months ago

Find the value of 'a' and 'b' if :

Attachments:

Answers

Answered by Anonymous
4

Answer:-

Given (5 + 2√3)/(7 + 4√3) = a + b√3

Rationalizing the denominator on left-hand-side by multiplying the numerator and denominator with (7 - 4√3),

(5 + 2√3) (7 - 4√3)/(7 + 4√3) (7 - 4√3) = a + b√3

Multiply term by term the two expressions on numerator of L.H.S. and for the denominator apply the identity (m+n) (m-n) = m² - n² . We obtain,

(35 - 20√3 + 14√3 - 8.√3.√3)/[7² - (4√3)²] = a + b√3

Or, (35 - 6√3 - 8.3)/(49 - 48) = a + b√3

Or, (35 - 6√3 - 24)/1 = a + b√3

Or, 11 - 6√3 = a + b√3

Now equate the rational and irrational terms from both sides.

11 = a

Or, a = 11

- 6√3 = b√3

⇒ b = -6

Answered by akeertana503
2

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{answer}}}

 \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \\  =  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }  \\  =  \frac{5 + 2 \sqrt{3}  \times 7 - 4 \sqrt{3} }{(7) {}^{2}  - (4 \sqrt{3)}  {}^{2} }  \\  =  \frac{35 + 14 \sqrt{3} - 20 \sqrt{3}  - 8 \sqrt{3}  \sqrt{3}  }{49 - 16 \sqrt{3}  \sqrt{3} }  \\ =  35 - \sqrt{3} (14 - 8) - 24 \\  = 35 - 3 \sqrt{6}  - 24 \\  = 11 - 6 \sqrt{3}  \\  \\ on \: comparing \: we \: get \:  \\  = a \: = 11 \\  = b =  - 6

\huge\mathfrak\pink{mark\:me\:as\:brainliest}

\bf\underbrace\red{follow\:me:}

\Large\orange{\textbf {\textsf {like\:it:}}}

Similar questions