find the value of a and b if
Answers
Solution
Given :-
- (7 + 3√5)/(3 + √5) - (7 - 3√5)/(3 - √5) = a + b√5
Find :-
- Value of a & b
Explanation
First we rationalize denominator of part (1).
= (7 + 3√5)/(3 + √5)
For Rationalize denominator , multiply by (3 - √5) Numerator & Denominator
= (7 + 3√5)(3 - √5)/(3 + √5)(3 - √5)
Using Formula,
★ ( a + b)(a - b) = (a² - b²)
★(a + b)(c + d) = ( ac + ad + bc + bd )
So,
= ( 21 - 7√5 + 9√5 - 15)/(3² - √5²)
= ( 6 + 2√5)/(9 - 5)
= 2( 3 + √5)/4
= (3 + √5)/2
Now, Rationalize denominator of part (2)
= 7 - 3√5)/(3 - √5)
For, rationalization Multiply by (3 + √5) in numerator & denominator
= (7 - 3√5)(3 + √5)/(3 - √5)(3 + √5)
= (21 + 7√5 - 9√5 - 15 )/( 3² - √5²)
= ( 6 - 2√5)/(9 - 5)
= 2(3 - √5)/4
= (3 - √5)/2
So, Take all parts
==> (3 + √5)/2 - (3 - √5)/2 = a + b√5
==> ( 3 + √5 - 3 + √5)/2 = a + b√5
==> ( 2√5) = a + b√5
Or,
==> 0 + 2√5 = a + b√5
Take comparison both side,
==> a = 0
And
==> b = 2
Hence
- Value of a = 0
- Value of b = 2