Math, asked by varuntejam3175, 1 day ago

find the value of a and b if √5-1/√5+1-√5+1/√5-1= a+ b√5​

Answers

Answered by thoratpruthak
1

Step-by-step explanation:

Step-by-step explanation:

\frac{\sqrt{5}+1}{\sqrt{5}-1}+\frac{\sqrt{5}-1}{\sqrt{5}+1}=a+b\sqrt{5}

5

−1

5

+1

+

5

+1

5

−1

=a+b

5

\frac{(\sqrt{5}+1)^2+(\sqrt{5}-1)^2}{(\sqrt{5}-1)(\sqrt{5}+1)}=a+b\sqrt{5}

(

5

−1)(

5

+1)

(

5

+1)

2

+(

5

−1)

2

=a+b

5

\frac{(\sqrt{5}+1)^2+(\sqrt{5}-1)^2}{5-1}=a+b\sqrt{5}

5−1

(

5

+1)

2

+(

5

−1)

2

=a+b

5

\frac{5+1+2\sqrt{5}+5+1-2\sqrt{5}}{4}=a+b\sqrt{5}

4

5+1+2

5

+5+1−2

5

=a+b

5

\frac{12+0\sqrt{5}}{4}=a+b\sqrt{5}

4

12+0

5

=a+b

5

3+0\sqrt{5}=a+b\sqrt{5}3+0

5

=a+b

5

comparing both sides we get

a=3 and b=0

Similar questions