Math, asked by PrincyDianaOkram, 8 months ago

Find the value of a and b if 5+3√2/5-2√2 = a+b√2​

Answers

Answered by aryan073
0

Answer:

Answer

__________

__________

Step-by-step explanation:

\longrightarrow\\  \red\bigstar\tt\:  \dfrac{5+3\sqrt2}{5-2\sqrt2}

\longrightarrow\\    \red\bigstar\tt\:  \dfrac{5+3\sqrt2}{5-2\sqrt2}  \times\dfrac{5+2\sqrt2}{5+2\sqrt2}

 \frac{5 + 3 \sqrt{2} }{5 - 2 \sqrt{2} }  \times  \frac{ 5 + 2 \sqrt{2} }{5 + 2 \sqrt{2} }

 \frac{5(5 + 2 \sqrt{2} ) + 3 \sqrt{2}(5 + 2 \sqrt{2} ) }{5 - 8}

 \frac{25 + 10 \sqrt{2}  + 15 \sqrt{2}  + 12}{ - 3}

 \frac{37 + 25 \sqrt{2} }{ - 3}

Answered by rk4846336
4

Answer:

  \frac{5 + 3 \sqrt{2} }{5 - 2 \sqrt{2} } = a + b \sqrt{2}   \\  \frac{5 + 3 \sqrt{2} }{5 - 2 \sqrt{2} }  \times   \frac{5 + 2 \sqrt{2} }{5 + 2 \sqrt{2} }  = a + b \sqrt{2}  \\  \frac{25 + 10 \sqrt{2 }  + 15 \sqrt{2 +}  + 12}{25 - 8}  = a + b \sqrt{2}  \\  \frac{37 + 25 \sqrt{2} }{17}  = a + b \sqrt{2}  \\  \\ a =  \frac{37}{17}  \:  \:,.  b =  \frac{25}{17}

mark it brainliest answer

have a nice day

Thank you 073

Similar questions