find the value of a and b if 5+√3÷√5-√3=1/2a+3b√15
Answers
Answer:
the answer is = 7/2 and b = 3/2
Step-by-step explanation:
Given:-
find the value of a and b if
5+√3÷√5-√3=1/2a+3b√15
Correction:-
√5+√3÷√5-√3=1/2a+3b√15
To find:-
Find the values of a and b ?
Solution:-
Given that
√5+√3÷√5-√3=1/2a+3b√15
LHS = 5+√3÷√5-√3
=>( 5+√3)/(√5-√3)
Denominator = √5-√3
We know that
The Rationalising factor of√a-√b = √a+√b
Rationalising factor of √5-√3 = √5+√3
On Rationalising the denominator then
=> ( 5+√3)(√5+√3)/(√5-√3)(√5+√3)
=> (√5+√)3^2/(√5-√3)(√5+√3)
=>[(√5)^2+2(√5)(√3)+(√3)^2] /[(√5)^2-(√3)^2]
(Since (a+b)^2 =a^2+2ab+b^2 and
(a+b)(a-b)=a^2-b^2)
=> (5+2√15+3)/(5-3)
=> (8+2√15)/2
=> 2(4+√15)/2
=> 4+√15
Now ,
4+√15 = 1/2a+3b√15
=> (8/2)+ (3/3)√15 = 1/2a+3b√15
=> 8(1/2)a +3 (1/3)√15 = 1/2a+3b√15
On Comparing both sides then
a = 8 and b = 1/3
Answer:-
The value of a = 8
The value of b = 1/3
Used formulae:-
- (a+b)^2 =a^2+2ab+b^2
- (a+b)(a-b)=a^2-b^2
- The Rationalising factor of√a-√b = √a+√b