Math, asked by sreya8b, 3 months ago

find the value of a and b if 5+√3/5-√3=a+b√15 ​

Answers

Answered by ItzMeMukku
2

\bold\color{red}{Answer:}

\rm{The~ value~ of ~(a+b) ~a ~is~ 20.}

\small\textbf{Step-by-step explanation:}

\color{red}\longrightarrow{}\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}=a+b\sqrt{15}

\color{red}\longrightarrow{}\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}=a+b\sqrt{15}

\color{red}\longrightarrow{}\frac{(\sqrt{5}+\sqrt{3})^2}{(\sqrt{5})^2-(\sqrt{3})^2}=a+b\sqrt{15}

\color{red}\longrightarrow{}\frac{5+2\sqrt{15}+3}{5-3}=a+b\sqrt{15}

\color{red}\longrightarrow{}\frac{8+2\sqrt{15}}{2}=a+b\sqrt{15}

\color{red}\longrightarrow{}4+\sqrt{15}=a+b\sqrt{15}

\rm{On~ comparing~ both~ sides.}

a=4

b=1

The value of (a+b)a is

\sf{(a+b)a=(4+1)4=5\times 4=20}

~~~~~~~~~~~~~

~~~~~~~~~~~~~\textbf\color{purple}\underline{the value of (a+b) a is 20.}

─━─━─━─━─━─━─━─━─━─━─━─━─

Thankyou :)

Similar questions