Math, asked by SabharishKumar, 7 months ago

③. Find the value of a and b
if
5+√3/5-√3=a+b√3

Answers

Answered by deepande88
1

Answer:

HER YOU GO..

Step-by-step explanation:

The given equation is

\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}=a+b\sqrt{15}

\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}=a+b\sqrt{15}

\frac{(\sqrt{5}+\sqrt{3})^2}{(\sqrt{5})^2-(\sqrt{3})^2}=a+b\sqrt{15}

\frac{5+2\sqrt{15}+3}{5-3}=a+b\sqrt{15}

\frac{8+2\sqrt{15}}{2}=a+b\sqrt{15}

4+\sqrt{15}=a+b\sqrt{15}

On comparing both sides.

a=4

b=1

The value of (a+b)a is

(a+b)a=(4+1)4=5\times 4=20

MARK AS BRAINLIEST!!

Similar questions