③. Find the value of a and b
if
5+√3/5-√3=a+b√3
Answers
Answered by
1
Answer:
HER YOU GO..
Step-by-step explanation:
The given equation is
\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}=a+b\sqrt{15}
\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}=a+b\sqrt{15}
\frac{(\sqrt{5}+\sqrt{3})^2}{(\sqrt{5})^2-(\sqrt{3})^2}=a+b\sqrt{15}
\frac{5+2\sqrt{15}+3}{5-3}=a+b\sqrt{15}
\frac{8+2\sqrt{15}}{2}=a+b\sqrt{15}
4+\sqrt{15}=a+b\sqrt{15}
On comparing both sides.
a=4
b=1
The value of (a+b)a is
(a+b)a=(4+1)4=5\times 4=20
MARK AS BRAINLIEST!!
Similar questions