Math, asked by abjahnavi2020, 8 months ago

find the value of a and b if 6-4√2/6+4√2=a+b√2.​

Answers

Answered by amankumaraman11
16

 \huge \bf \frac{6 - 4 \sqrt{2} }{6 + 4 \sqrt{2} }  =  a + b\sqrt{2}  \\  \\  \\  \tt =  >  \frac{6 - 4 \sqrt{2}(6 - 4 \sqrt{2} ) }{6 + 4 \sqrt{2}(6 - 4 \sqrt{2} ) }  = a + b\sqrt{2}  \\  \\  \tt {=  >  \frac{ {(6)}^{2}  +  { (4 \sqrt{2}  )}^{2}  - 2(6)(4 \sqrt{2} )}{ {(6)}^{2} -  {(4 \sqrt{2}) }^{2} }  =   a + b\sqrt{2} } \\  \\  \tt =  >  \frac{36 - 48 \sqrt{2}  + 32}{36 - 32}  = a + b \sqrt{2}  \\  \\ \tt  =  >  \frac{68 - 48 \sqrt{2} }{4}  = a + b \sqrt{2}  \\  \\  \tt =  >  \frac{68}{4}  +  \bigg(  -  \frac{48 \sqrt{2} }{4} \bigg) = a + b \sqrt{2}

Hence,

 \boxed{ \sf a  \:  \: =   {\frac{68}{4}}  \:  \:  =  \red{17}} \\  \\  \boxed{ \sf b  \:  \: =   {\frac{ - 48}{4}}  \:  \:  =  \red{ - 12}}

Similar questions