Math, asked by thakurSingh174, 10 months ago

Find the value of a and b if 7+3under root 5/ 3+under root 5 - 7-3under root5/3- under root 5 =a+b under root 5​

Answers

Answered by Tomboyish44
24

Given:

\sf \Longrightarrow \dfrac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \dfrac{7 - 3\sqrt{5}}{3 - \sqrt{5}} = a + b\sqrt{5}

To Find:

Value of 'a' & 'b'.

Solution:

\sf \Longrightarrow \dfrac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \dfrac{7 - 3\sqrt{5}}{3 - \sqrt{5}}

\sf \Longrightarrow \dfrac{\Big(7 + 3\sqrt{5}\Big) \Big(3 - \sqrt{5}\Big) - \Bigg[ \Big(7 - 3\sqrt{5}\Big) \Big(3 + \sqrt{5} \Big) \Bigg] }{\Big(3 + \sqrt{5}\Big) \Big(3 - \sqrt{5} \Big)}

\sf \Longrightarrow \dfrac{21 - 7\sqrt{5} + 9\sqrt{5} - 3(5) - \Big( 21 + 7\sqrt{5} - 9\sqrt{5} - 3(5) \Big)}{\Big(3\Big)^2 - \Big(\sqrt{5}\Big)^2}

\sf \Longrightarrow \dfrac{21 + 2\sqrt{5} - 15 - \Big( 21 - 2\sqrt{5} - 15 \Big)}{9 - 5}

\sf \Longrightarrow \dfrac{6 + 2\sqrt{5} - \Big(6 - 2\sqrt{5} \Big)}{4}

\sf \Longrightarrow \dfrac{6 + 2\sqrt{5} - 6 + 2\sqrt{5}}{4}

\sf \Longrightarrow \dfrac{4\sqrt{5} }{4}

\sf \Longrightarrow \sqrt{5}

ATQ;

\sf \Longrightarrow \dfrac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \dfrac{7 - 3\sqrt{5}}{3 - \sqrt{5}} = a + b\sqrt{5}

\sf \therefore \ \sqrt{5} = a + b\sqrt{5}

Final answer:

a = 0

b = 1

Answered by Anonymous
13

Step-by-step explanation:

⭐AnswEr⭐

 \implies \frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  -  \frac{7 - 3 \sqrt{5} }{3 -  \sqrt{5} }  = a + b \sqrt{5}

 \implies \frac{7 + 3 \sqrt{5} (3 -  \sqrt{5}  ) - (7 - 3 \sqrt{5}(3 +  \sqrt{5}))  }{(3 +  \sqrt{5})(3 -  \sqrt{5}  }

 \implies \frac{21 - 7 \sqrt{5}  + 9 \sqrt{5} - 15 - (21 + 7 \sqrt{5}   - 9 \sqrt{5}  - 15)}{9 - 5}

 \implies \frac{6 + 2 \sqrt{5} - (6 - 2 \sqrt{5}  )}{4}

 \implies \frac{6 + 2 \sqrt{5} - 6 + 2 \sqrt{5}  }{4}

 \implies  \frac{4 \sqrt{5} }{4}

 \implies \sqrt{5}

Therefore,

√5=a+b√5.

and

♣️ Value of a and b is 0 and 1 respectively ♣️

Similar questions