Math, asked by rrrmnkrrr, 2 months ago

Find the value of a and b if a+8√5b=8+√5/8-√5​

Answers

Answered by karanadhikary811720
1

Answer:

GIVEN

if a+8√5b=8+√5/8-√5+8-√5/8+√5

RHS

= 8 + (√5 / 8) - √5 + 8 - (√5 / 8) + √5

MAKE IT EQUAL TO a + 8√5b

8 + (√5 / 8) - √5 + 8 - (√5 / 8) + √5 = a + 8√5b

LCM is 8

(64 + √5 - 8√5 + 64 - √5 + 8√5) / 8 = a + 8√5b

128 / 8 = a + 8√5b

16 = a + 8√5b

Can be written as

16 + (8√5) x0 = a + 8√5b

Therefore, a = 16 & b = 0

Step-by-step explanation:

Answered by chirag9090singh9090
1

\huge\color{cyan}\boxed{\colorbox{black}{\sf{ANSWER ❤}}}

a + 8 \sqrt{5} b =  \frac{8 +  \sqrt{5} }{8 -  \sqrt{5} }  \\

  =  \frac{(8 +  \sqrt{5})(8 +  \sqrt{5} ) }{(8 -  \sqrt{5})(8 +  \sqrt{5}  )}  \\

 =  \frac{64 + 16 \sqrt{5}  + 5}{64 - 5}  \\

 =  \frac{64 + 16 \sqrt{5} + 5 }{59}  \\

Similar questions