Math, asked by coco50, 1 month ago

Find the value of a and b, if a + b√2 =
3+ √2
3− √2

Answers

Answered by MathLoverHannu
29

Answer:

 \tt \huge a =  \frac{11}{7}  \:  \:  \: and \:  \:  \: b =  \frac{6}{7}

Appropriate question:-

• Find the value of a and b, if a + b√2 = 3+√2 / 3-√2

Solution:-

First rationalise them,

  \to\tt \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }   \times   \frac{3 +  \sqrt{2} }{3 +  \sqrt{2} }  \\  \\  \to \tt \frac{( {3 +  \sqrt{2}) }^{2} }{( {3})^{2} -  { (\sqrt{2}) }^{2} }   \\  \\  \tt \to \frac{ {3}^{2} +  { (\sqrt{2} )}^{2} + 2 \times 3 \times  \sqrt{2}   }{9 - 2}  \\  \\  \tt \to \frac{9 + 2 + 6 \sqrt{2} }{7}  \\  \\  \tt \to \frac{11 + 6 \sqrt{2} }{7}

So, a+b√2 = 11+6√2 /7

Hence value of :-

 \tt \huge a =  \frac{11}{7}

 \tt \huge b =  \frac{6}{7}

__________________________________________

Thanks for question ☺️

Similar questions