Math, asked by angadsinghbatsy, 1 year ago

find the value of a and b if a+b√7 = \frac{3+2√7 }{3-2√7 }

Answers

Answered by abhi569
5

a + b \sqrt{7}  =  \frac{3 + 2 \sqrt{7} }{3 - 2 \sqrt{7} }



By Rationalization ,



a + b \sqrt{7}  =  \frac{3 + 2 \sqrt{7} }{3 - 2 \sqrt{7} }  \times  \frac{3 + 2 \sqrt{7} }{3 + 2 \sqrt{7} }  \\  \\  \\  \\  a + b \sqrt{7}  =  \frac{ {(3 + 2 \sqrt{7}) }^{2} }{ {(3)}^{2}  -  {(2 \sqrt{7} )}^{2} }  \\  \\  \\  \\ a + b \sqrt{7}  =  \frac{9 + 28 + 4 \sqrt{7} }{9 -28 }  \\  \\  \\  \\ a + b \sqrt{7}  =  \frac{37 + 4 \sqrt{7} }{ - 19}  \\  \\  \\  \\ a + b \sqrt{7}  =  -  \frac{37}{19}  -  \frac{4 \sqrt{7} }{19}






Comparing values, we get

a = - 37 / 19

b = - 4 / 19
Similar questions