Math, asked by deepakpanneerselvam, 1 year ago

Find the value of a and b if i) √2+√3/3√2-2√3 = a+b√6

Answers

Answered by adinann
3
Hi !

Identity used :

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

 \frac{ \sqrt{2}  +  \sqrt{3} }{3 \sqrt{2} - 2 \sqrt{3}  }  = a + b \sqrt{6}  \\

L.H.S

On rationalizing the denominator we get,

 =  \frac{ \sqrt{2}  +  \sqrt{3} }{3 \sqrt{2}  - 2 \sqrt{3} }   \times  \frac{3 \sqrt{2}  + 2 \sqrt{3} }{3 \sqrt{2}  + 2 \sqrt{3} }  \\  \\  =  \frac{ \sqrt{2} (3 \sqrt{2} + 2 \sqrt{3}  ) +  \sqrt{3} (3 \sqrt{2}  + 2 \sqrt{3} )}{ {(3 \sqrt{2}) }^{2}  -  {(2 \sqrt{3}) }^{2} }  \\  \\  =  \frac{6 + 2 \sqrt{6}  + 3 \sqrt{6}  + 6}{18 - 12}  \\  \\  =  \frac{12 + 5 \sqrt{6} }{6}  \\  \\  = 2 +  \frac{5 \sqrt{6} }{6}

On comparing we get,

2 +  \frac{5 \sqrt{6} }{6}  = a + b \sqrt{6}  \\  \\ a = 2 \:  :  \: b =  \frac{5}{6}
Similar questions