Math, asked by praisejacob10, 14 hours ago

. Find the value of a and b if :
(i) root7−1/root7+1−√7+1/root7−1= a + b root7

Answers

Answered by VεnusVεronίcα
45

Required answer:

The value of 'a' and 'b' in a + b√7 is 0 and .

 \\

Step-by-step explanation:

  \tt{ :  \implies \:  \:  \dfrac{ \sqrt{7}  - 1}{ \sqrt{7}  + 1}  -  \dfrac{ \sqrt{7} + 1 }{ \sqrt{7}  - 1}  = a + b \sqrt{7} }

 \:

Firstly, rationalising the first part of the LHS :

 \tt{ :  \implies \:  \:  \dfrac{ \sqrt{7} - 1 }{ \sqrt{7}  + 1}  \times  \bigg \{ \dfrac{ \sqrt{7}  - 1}{ \sqrt{7} - 1 }  \bigg \}}

 \tt{  : \implies \:  \:  \dfrac{ {( \sqrt{7} - 1) }^{2} }{ {( \sqrt{7} )}^{2} -  {(1)}^{2}  } }

 \tt{ :  \implies \:  \:  \dfrac{ ( \sqrt{7})^{2}  +  {(1)}^{2}   - 2 \: ( \sqrt{7}  ) \: (1)}{7 - 1} }

 \tt{ :  \implies \:  \:  \dfrac{7 + 1 - 2 \sqrt{7} }{6} }

 \tt{ :  \implies \:  \:  \dfrac{8  -  2 \sqrt{7} }{6} }

 \tt{ :  \implies \:  \:  \dfrac{ \cancel2 \: (4  -   \sqrt{7} )}{ \cancel6 } }

 \tt{ :  \implies \:  \:  \dfrac{4 -  \sqrt{7} }{3}\qquad\dots\dots eq^n.1 }

 \:

Now, rationalising the denominator of the second part of the LHS :

 \tt { :  \implies \:  \:  \dfrac{ \sqrt{7}  + 1 }{\sqrt{7}  - 1}   \times \bigg \{ \dfrac{ \sqrt{7} + 1 }{ \sqrt{7} + 1 }  \bigg \}}

 \tt{ :  \implies \:  \: \dfrac{ {( \sqrt{7}  + 1)}^{2} }{ {( \sqrt{7} )}^{2} -  {(1)}^{2}  }  }

 \tt{ :  \implies \:  \:  \dfrac{ ( \sqrt{7} )^{2} +  {(1)}^{2}  + 2 \: ( \sqrt{7}) \: (1)   }{7 - 1} }

 \tt{ :  \implies \:  \: \dfrac{7 + 1 + 2 \sqrt{7} }{6}  }

 \tt{ :  \implies \:  \:  \dfrac{8 + 2 \sqrt{7} }{6} }

 \tt{ :  \implies \:  \: \dfrac{ \cancel2 \: (4 +  \sqrt{7} )}{ \cancel6}  }

 \tt{ :  \implies \:  \: \dfrac{4 +  \sqrt{7} }{3}\qquad\dots\dots eq^n.2 }

 \:

Now, let's subtract eq. ⓶ from eq. ⓵ :

 \tt{ :  \implies \:  \:  \dfrac{4 -  \sqrt{7} }{3}  -  \bigg \{ \dfrac{4 +  \sqrt{7} }{3}  \bigg \}}

 \tt{ :  \implies \:  \: \dfrac{4 - 4 -  \sqrt{7}   -   \sqrt{7} }{3}  }

 \tt{ :  \implies \:  \: \dfrac{ - 2 \sqrt{7} }{3}  }

 \:

On comparing this to RHS, we get the values :

 \tt{  \bigstar \:  \:  \: a = 0  \: and \: b =  \dfrac{ - 2}{3}   \:  \: \:   \bigstar}

Similar questions