Math, asked by priya0526, 1 year ago

find the value of A and B if root 7 minus 1 by root 7 + 1 - root 7 + 1 bfind the values of A and B if root 7 minus 1 by root 7 + 1 - root 7 + 1 by root 7 minus 1 is equals to a + b root 7 and (√)root is only with 7 not with one (√)​

Attachments:

Answers

Answered by Amanwadhwa20
6

Answer:

Hey mate....

Here is your answer.....

 \frac{ \sqrt{7 }  - 1}{ \sqrt{7} + 1 }  -  \frac{ \sqrt{7} + 1 }{ \sqrt{7}  - 1}  = a + b \sqrt{7}

Rationalise the denominator...

( \frac{ \sqrt{7}  - 1}{ \sqrt{7}  + 1} \times  \frac{ \sqrt{7}  - 1}{ \sqrt{7}  - 1}   ) - ( \frac{ \sqrt{7} + 1 }{ \sqrt{7}  - 1}  \times  \frac{ \sqrt{7}  + 1}{ \sqrt{7} + 1 } ) \\  \\ ( \frac{7 + 1 - 2 \sqrt{7} }{ { \sqrt{7} }^{2} -  {1}^{2}  } ) - ( \frac{7 + 1 + 2 \sqrt{7} }{ { \sqrt{7} }^{2}   -  {1}^{2} } ) \\  \\(  \frac{8 - 2 \sqrt{7} }{6} ) - ( \frac{8 + 2 \sqrt{7} }{6} ) \\  \\  \frac{8 - 2 \sqrt{7}  - (8 + 2 \sqrt{7}) }{6}  \\  \\  \frac{8 - 2 \sqrt{7 } - 8 - 2 \sqrt{7}  }{6}  \\   \frac{ - 4 \sqrt{7} }{6}  \\  \\  \frac{ - 2 \sqrt{7} }{3}  = a + b \sqrt{7}  \\  \\ 0 +  \frac{ - 2}{3}  \sqrt{7}  = a + b \sqrt{7}  \\  \\ by \: comparing \: both \: sides \\  \\ a = 0 \\  \\ b =  - \frac{ - 2}{3}

Please mark it as the brainliest answer

Answered by Anonymous
0

Answer:

{\huge{\overbrace{underbrace{\purple{ANSWER}}}}}[\tex][tex]\huge\mathfrak{\pink{\boxed{\boxed{Heya}}}}}}

\huge\mathcal{\pink{\underline{\blue{\boxed{\purple{Heya}}}}}}

\huge{\fbox{\fbox{\bigstar{\mathfrak{\red{ANSWER}}}}}}

\huge {\mathcal{\purple{A}\green{N}\pink{S}\blue{W}\purple{E}\green{R}\pink{!}}} <marquee \: behaviour = alternate><font \: color=green>

Similar questions