Math, asked by Ramuchaudhary, 1 year ago

find the value of A and B if  \frac{2 + 3i}{1 + i}  = A + iB

Answers

Answered by Swarnimkumar22
14
\bold{\huge{Hay!!}}

\bold{Dear\:user!!}

\bold{\underline{Question-}}

find the value of A and B if \frac{2 + 3i}{1 + i} = A + iB

\bold{\underline{Answer-}}

\bold{Your\:answer\:is\:\:(A = 5/2,B = 1/2)}

\bold{\underline{Explanation-}}

 \frac{2 + 3i}{1 + i} = A + iB

 \frac{(2 + 3i)(1 - i)}{(1 + i)(1 - i)} = A + iB \: \\ \\ \\ \\

 \frac{2 - 2i + 3i - 3 {i}^{2} }{1 - i {}^{2} } = A + iB \\ \\ \\ \frac{2 + i + 3}{1 + 1} = A + iB \\ \\ \\ \frac{5}{2} + \frac{i}{2} = A + iB \\ \\ \\ A = \frac{5}{2} \: \: \: . \: \: \: \: \: B = \frac{1}{2} \\ \\
Similar questions