Math, asked by yuvraj113, 1 year ago

find the value of a and b if
  \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} } = a + b  \sqrt{2}

Answers

Answered by ArchitectSethRollins
1
Hi friend ✋✋✋✋
---------------
Your answer
--------------------

 \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  = a \:  + b \sqrt{2}  \\  \\ now \:  \\   -  -  -  -  \\  \\ we \: will \: have \: to \: rationalise \: the \: denominator \\  \\  \frac{(3 +  \sqrt{2})}{(3 -  \sqrt{2} )}  \times  \frac{(3 +  \sqrt{2}) }{(3 +  \sqrt{2}) }  \\  \\  =  >  \frac{(3 +  \sqrt{2} ) {}^{2} }{(3) {}^{2} - ( \sqrt{2}  ) {}^{2} }  \\  \\  =  >  \frac{(3) {}^{2}  + 6 \sqrt{2}  + ( \sqrt{2}) {}^{2}  }{9 - 2}  \\  \\  =  >  \frac{9 + 6 \sqrt{2} + 2 }{7}  \\  \\  =  >  \frac{11 + 6 \sqrt{2} }{7}  \\  \\  >  \frac{11}{7}  +  \frac{6 \sqrt{2} }{7}  = a \:  + b \sqrt{2}  \\  \\  =  > a \:  =  \frac{11}{7} and \: b =  \frac{6}{7}
HOPE IT HELPS
Similar questions