Math, asked by ItzChocoGurl, 6 months ago

Find the value of a and b if
 \frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  -   \frac{7 - 3 \sqrt{5} }{3 -  \sqrt{5} }  = a +  \sqrt{5b}

Answers

Answered by llAloneSameerll
3

\huge{\underline{\underline{\sf{\orange{Solution:-}}}}}

\blue{We\:Have}

 \frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  -  \frac{7 - 3 \sqrt{5} }{3 -  \sqrt{5} }  =  \frac{(7 + 3 \sqrt{5)} }{(3 +  \sqrt{5)} }  \times  \frac{(3 -  \sqrt{5} )}{(3 -  \sqrt{5}) }  -  \frac{(7 - 3 \sqrt{5} )}{(3 -  \sqrt{5}) }  \times  \frac{(3 +  \sqrt{5} }{(3 +  \sqrt{5}) }  \\  =  \frac{(21 - 7 \sqrt{5} + 9 \sqrt{5}  - 15 }{(3 +  \sqrt{5})(3 -  \sqrt{5} ) }  -  \frac{(21 + 7 \sqrt{5} - 9 \sqrt{5} - 15  )}{(3 -  \sqrt{5})(3 +  \sqrt{5}  )}  \\  =   \frac{(6 + 2 \sqrt{5} )}{ {(3)}^{2} -  {( \sqrt{5}) }^{2}  }  -   \frac{(6 - 2 \sqrt{5} )}{ {(3)}^{2} -  {( \sqrt{5}) }^{2}  }  \\  =  \frac{(6 + 2 \sqrt{5} )}{(9 - 5)}  -  \frac{(6 - 2 \sqrt{5}) }{(9 - 5)}  =  \frac{6 + 2 \sqrt{5} }{4}  -  \frac{6 - 2 \sqrt{5} }{4}  \\  =  \frac{6 + 2 \sqrt{5} - 6 + 2 \sqrt{5}  }{4}  =  \frac{4 \sqrt{5} }{4}  =  \sqrt{5} .

\therefore \:  \frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} } -  \frac{7 - 3 \sqrt{5} }{3 -  \sqrt{5} }   = a +  \sqrt{5b}  ⇒ \sqrt{5}  = a +  \sqrt{5b}  \\  ⇒a = 0 \: and \: b = 1.

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions