Math, asked by sofia2130, 3 months ago

find the value of 'a' and 'b' if
 \frac{ \sqrt{3}  - 1}{ \sqrt{3}   + 1}  = a + b \sqrt{3}

Answers

Answered by Anonymous
7

Answer :-

\sf \dfrac{\sqrt 3 - 1}{\sqrt 3 + 1 } = a + b\sqrt3

Solving the LHS :-

\implies\sf \dfrac{\sqrt 3 - 1}{\sqrt 3 + 1 }

Rationalizing the denominator :-

\implies\sf \left(\dfrac{\sqrt 3 - 1}{\sqrt 3 + 1 }\right)\times \left(\dfrac{\sqrt 3 - 1}{\sqrt 3 - 1 } \right)

\implies\sf \dfrac{(\sqrt 3 - 1)^2}{(\sqrt3-1)(\sqrt3+1)}

Using the identities :-

  • \sf (a - b)^2 = a^2 + b^2 - 2ab
  • \sf (a+b)(a-b) = a^2 - b^2

\implies\sf \dfrac{(\sqrt 3)^2 + 1^2 - 2 \times \sqrt 3 \times 1}{(\sqrt{3})^2 - (1)^2}

\implies\sf \dfrac{3 + 1 - 2\sqrt 3}{3 - 1}

\implies\sf \dfrac{4 -2 \sqrt 3}{2}

\implies\sf 2 - \sqrt 3

Comparing LHS and RHS :-

\implies\sf 2 - \sqrt 3 = a + b\sqrt3

  • a = 2
  • b = -1

Value of a = 2 & b = -1

Answered by harisreemedicalskylm
7

Answer:

read the above pic ^_^

hope you are also doing well

Attachments:
Similar questions