find the value of a and b if underroot 7-1/underroot 7+1=a+b underroot 7
Answers
Answered by
3
Answer:
a=0 and b=\frac{-2}{3}
Step-by-step explanation:
The given equation is:
\frac{\sqrt{7}-1}{\sqrt{7}+1}-\frac{\sqrt{7}+1}{\sqrt{7}-1}=a+b\sqrt{7}
Solving the LHS of the above equation, we get
\frac{(\sqrt{7}-1)^{2}-(\sqrt{7}+1)^{2}}{7-1}
=\frac{7+1-2\sqrt{7}-7-1-2\sqrt{7}}{6}
=\frac{-4}{6}\sqrt{7}
=\frac{-2}{3} \sqrt{7}
Now, comparing with the RHS of the given equation, we get
a=0 and b=\frac{-2}{3}
Similar questions