Math, asked by haider9160, 11 months ago

Find the value of a and b in each of the following equalities : 5 + 2√3 / 7+ 4√3 = a + b √3

Answers

Answered by Anonymous
37

 \large\bf\underline{Given:-}

  • 5+2√3 /7+4√3 = a+ b√3

 \large\bf\underline {To \: find:-}

  • Value of a and b.

 \huge\bf\underline{Solution:-}

  • 5 + 2√3 / 7+ 4√3 = a + b √3

 \rm \dashrightarrow \: \frac{5 + 2 \sqrt{3} }{ 7 + 4 \sqrt{3} }  = a + b \sqrt{3}  \\  \\ \rm \dashrightarrow \:taking \:  \underline{LHS :  - }  \\  \\ \rm\rm \dashrightarrow \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \\  \\  \rm \underline{ \dag \: rationalising \: denominator : \:  -  } \\  \\ \rm \dashrightarrow \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }  \\  \\ \bf \dashrightarrow \: (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\ \rm \dashrightarrow \frac{5 (7 - 4 \sqrt{3}) + 2 \sqrt{3}(7 - 4 \sqrt{3} )  }{49 - 48}  \\  \\ \rm \dashrightarrow \frac{35 - 20 \sqrt{3}  + 14 \sqrt{3}  - 24}{1}  \\  \\\rm{\text{it is given that LHS =  a + b root3}} \\\\ \rm \dashrightarrow \frac{11 - 6 \sqrt{3} }{1}  = a + b \sqrt{3}  \\  \\  \dashrightarrow \boxed{ \bf 11 = a} \\  \\ \rm \dashrightarrow \: b \sqrt{3}  =  - 6 \sqrt{3}  \\  \\ \rm \dashrightarrow \boxed{ \bf \: b =  - 6}

✞ Hence , a = 11 and b = -6

Answered by Anonymous
17

\bf\large{\underline{Question:-}}

Find the value of a and b in each of the following equalities : 5 + 2√3 / 7+ 4√3 = a + b √3.

\bf\large{\underline{Given:-}}

  • 5 + 2√3 / 7+ 4√3 .

\bf\large{\underline{To\:find:-}}

  • value of a+b=?

\bf\large{\underline{Solution:-}}

Identity used

\tt→ a^2-b^2=(a+b)(a-b)

Now,

★ Rationalize the denominator

\tt→ \frac{5+2\sqrt3}{7+4\sqrt3}×\frac{7-4\sqrt3}{7-4\sqrt3}=a+b\sqrt3\\\tt→5 \frac{(7-4\sqrt3)+2\sqrt3(7-4\sqrt3)}{49-48}=a+b\sqrt3\\\tt→ \frac{35-20\sqrt3+14\sqrt3-24}{49-48}=a+b\sqrt3\\\tt→ \frac{11-6\sqrt3}{1}=a+b\sqrt3\\\tt→  a=11 \\\tt→ b\sqrt3=6\sqrt3 (\sqrt3\:,\sqrt3 \: cancel\:out\:by\:each\:other)\\\tt→ b=-6

Hence,

→ a= 11

→ b= -6

Similar questions