find the value of a and b in p(x) = 3x^3-9x^2+ax+b p(2)=19 and p(-1)=12
Answers
Answered by
1
putting the value of 2 in the equation,we have--
p(2)=3(2)^3-9(2)^2+2a+b
= 24-36+2a+b
=12+2a+b
19=12+2a+b
19-12=2a+b
2a+b=7
putting the value of -1 in the equation,we have--
p(-1)=3(-1)^3-9(-1)^2+(-1)a+b
=-3 -9-a+b
=-12-a+b
12=-12-a+b
12+12=-a+b
-a+b=24
now ,
2a+b=7
b=7-2a
Substituting the value of b in the equation, we have
-a+7-2a=24
7-3a=24
7-24=3a
-17=3a
-17/3=a
Hence,a=-17/3
-a+b=24
-(-17/3)+b=24
b=24-17/3
b=55/3
Similar questions