Math, asked by mandirasaha826, 1 year ago

Find the value of a and b in quadratic equation ax^2 -13x +b =0, where x=3÷2 and x=2÷ 3 are the roots
?????

Answers

Answered by Twinkle123456
1
The roots of given equation I. e. the solutions of the equation are given.
For x=3/2
a {x}^{2}  - 13x + b = 0 \\ put \: x =  \frac{3}{2}  \\ a \times ( { \frac{3}{2}) }^{2}  - 13 \times  \frac{3}{2}  + b = 0 \\  \frac{9}{4} a -  \frac{39}{2}  + b = 0 \\ multiplying \: by \: 8on \: both \: sides \: \\ 18a - 156 + b = 0 \\ 18a + b = 156...................(1)
Now for x=2/3
put \: x =  \frac{2}{3} \\ a {x}^{2}  - 13x + b = 0 \\ a \times ( { \frac{2}{3}) }^{2}  - 13 \times  \frac{2}{3}  + b = 0 \\  \frac{4}{9} a -  \frac{26}{3}  \ + b = 0 \\ multiplying \: by \: 27on \: both \: sides \:  \\ 12a - 234 + b = 0 \\ 12a + b = 234...............(2)
Now, equation (1)-(2),we get
18a+b=156
-12a+b=234
-------------------
6a. = -78
therefore.' a= -13'
and. ' b=390'
Similar questions