Math, asked by vedbhavsar2000, 2 months ago

Find the value of 'a' and 'b' in
 \frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  -  \frac{7 - 3 \sqrt{5} }{3 -  \sqrt{5} }  = a + b \sqrt{5}
plz solve correctly and do not spam​

Answers

Answered by Anonymous
5

Answer:

{ \large{ \underline{ \sf{Given}}}}

  •   \sf{ \frac{7 + 3 \sqrt{5} }{3 + \sqrt{5} } - \frac{7 - 3 \sqrt{5} }{3 - \sqrt{5} } =  a + b \sqrt{5}} \\

{ \large{ \underline{ \sf{To \:  Find}}}} \:

  • Value of a and b

{ \large{ \underline{ \sf{Solution }}}}

  • First let us rationalize the denominator and solve it at last we will get the value of a and b. Let's start our solution.

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ★━━━━━━━━━★

 \dashrightarrow{ \sf{ \frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} } -  \frac{7 - 3 \sqrt{5} }{3 -  \sqrt{5} }  }} \\  \\  \\  \dashrightarrow{ \sf{ \frac{7+ 3\sqrt{5} }{3+ \sqrt{5} }  \times \frac{3 -  \sqrt{5} }{3- \sqrt{5} }  -  \bigg( \frac{7-3 \sqrt{5} }{3- \sqrt{5} } × \frac{3+ \sqrt{5} }{3+ \sqrt{5} }\bigg) }} \\  \\  \\ \dashrightarrow{ \sf{ \frac{3- \sqrt{5} (7 + 3 \sqrt{5} )}{ {3}^{2}  -  {( \sqrt{5} )}^{2} }  - \bigg( \frac{3+ \sqrt{5} (7-3 \sqrt{5} )}{  {3}^{2}  - { (\sqrt{5} )}^{2} } }} \\  \\  \\ \dashrightarrow{ \sf{ \frac{21  +  9 \sqrt{5}  - 7  \sqrt{5}   - 15}{9 - 5}  - \bigg( \frac{21 + 7 \sqrt{5}  - 9 \sqrt{5}  - 15}{9 - 5} \bigg)}} \\  \\  \\ \dashrightarrow{ \sf{ \frac{21  + 9 \sqrt{5}  - 7 \sqrt{5}  - 15 - 21 - 7 \sqrt{5} + 9 \sqrt{5} + 15  }{ 4 } }} \\  \\  \\ \dashrightarrow{ \sf{ \frac{9 \sqrt{5} + 9 \sqrt{5}  - 7 \sqrt{5}  - 7 \sqrt{5}  }{4} }} \\  \\  \\ \dashrightarrow{ \sf{ \frac{18 \sqrt{5} - 14 \sqrt{5}  }{4}  }} \\  \\  \\ \dashrightarrow{ \sf{ \frac{4 \sqrt{5} }{4} }} \\  \\  \\ \dashrightarrow{ \sf{ \sqrt{5} }} \\  \\  \\  { \sf{Comparing  \: with  \: a + b \sqrt{5} }} \\  \\  \\ \sf{We \: get, } \\  \\  \\ \sf{a = 0 ,b = 1}

Therefore,

  • Values of a and b are 0, 1

━━━━━━━━━━━━━━━━━━━━

Note: If you are an app user, please swipe to left side for viewing solution.

Similar questions