Math, asked by ranjithasrinivp9dg9r, 1 year ago

find the value of a and b in the following 1) 5+2√3/7+4√3=a-b√3 (2) √3-1/√3+1=a+b√3

Answers

Answered by DaIncredible
10
Heya there !!!
Here is the answer you were looking for :

Identities used :

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}  \\  {(x - y) }^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy


(1)
 \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  = a - b \sqrt{3}  \\

L.H.S

On rationalizing the denominator we get,

 =  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }  \\  \\  =  \frac{5(7 - 4 \sqrt{3} ) + 2 \sqrt{3}(7 - 4 \sqrt{3})  }{ {(7)}^{2}  -  {(4 \sqrt{3} )}^{2} }  \\  \\  =  \frac{35 - 20 \sqrt{3}  + 14 \sqrt{3}  - 24}{49 - 48}  \\  \\  = 11 - 6 \sqrt{3}

On comparing we get,

11 - 6 \sqrt{3}  = a - b \sqrt{3}  \\  \\ a = 11 \:  :  \: b = 6

(2)
 \frac{ \sqrt{3} - 1 }{ \sqrt{3} + 1 }  = a + b \sqrt{3}  \\

L.H.S

On rationalizing the denominator we get,

 =  \frac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 }  \times  \frac{ \sqrt{3} - 1 }{ \sqrt{3} - 1 }  \\  \\  =  \frac{ {( \sqrt{3} )}^{2} +  {(1)}^{2}   - 2( \sqrt{3})(1) }{ {( \sqrt{3} )}^{2} -  {(1)}^{2}  }  \\  \\  =  \frac{3 + 1 - 2 \sqrt{3} }{3 - 1}  \\  \\  =  \frac{4 - 2 \sqrt{3} }{2}  \\  \\  =  \frac{2(2 -  \sqrt{3} )}{2}  \\  \\  = 2 -   \sqrt{3}

On comparing we get,

2 -  \sqrt{3}  = a + b \sqrt{3}  \\  \\ a = 2 \:  :  \: b =  - 1

Hope this helps!!!

If you have any doubt regarding to my answer, please ask in the comment section ^_^

@Mahak24

Thanks...
☺☺

Anonymous: Nice answer sistah
DaIncredible: thanka dii ☺☺
PrincessNumera: awsm ans didu
Answered by Anonymous
14
Hello dear user ...

Solution Given below ☺✌
____________________________

Question Given =
 \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  = a - b \sqrt{3}  \\  \\  =  >  \frac{(5 + 2 \sqrt{3}) }{(7 + 4 \sqrt{3} )}  \times  \frac{(7 - 4 \sqrt{3}) }{(7 - 4 \sqrt{3} )}  = a -  \sqrt{3}  \\  \\  multiply \:  \: nr \:  \: and \:  \: dr \:  \: \\  \\  =  >  \frac{5(7 - 4 \sqrt{3}) + 2 \sqrt{3} (7 - 4 \sqrt{3}  )}{( {7})^{2} - (4 \sqrt{3}   {)}^{2} }   \\  \\  =  >  \frac{35 - 20 \sqrt{3} + 14 \sqrt{3}  - 24  }{49 - 48}  \\  \\  =  >  \frac{11 - 6 \sqrt{3} }{1}  = 11 - 6 \sqrt{3}
iF we comparing with a - b√3

we get

a = 11 and b = 6

a - b \sqrt{3}  = 11 - 6 \sqrt{3}
_______________________________

2.

Question =
 \frac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 }   = a + b \sqrt{3}  \\  \\  =  >  \frac{( \sqrt{3}  - 1)}{( \sqrt{3}  + 1)}  \times  \frac{( \sqrt{3} - 1) }{( \sqrt{3}  - 1)}  = a + b \sqrt{3}  \\  \\  =  >  \frac{( \sqrt{3}  - 1 {)}^{2} }{( \sqrt{3}  {)}^{2}  - (1 {)}^{2} }  = a - b \sqrt{3}  \\  \\  =  >  \frac{3 + 1 - 2 \sqrt{3} }{3 - 1}  \\  \\  =  >  \frac{4 - 2 \sqrt{3} }{2}  = 2(2 -  \sqrt{3} ) \\  \\  =  > 2 -  \sqrt{3}
If we comparing with a + b√3

we get =

a = 2 and. b = -1
____________________________

Hope it's helps you.
☺☺

Anonymous: Nice answer sistah
PrincessNumera: awsm ans. sistah
Similar questions